首页>源码>java>net1qian-flink-ctp-demo

net1qian-flink-ctp-demo

声明:资源链接索引至第三方,平台不作任何存储,仅提供信息检索服务,若有版权问题,请https://help.coders100.com提交工单反馈
首先,我们需要创建一个Flink的DataStream来读取tick数据CSV文件。然后,我们可以使用CTP API来订阅期货数据。在Java级别,我们可以实现实时数据分析,例如计算成交量、价格等指标。

以下是一个简单的示例:

1. 创建Flink的DataStream:

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;

public class FlinkDemo {
public static void main(String[] args) throws Exception {
// 创建Flink执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// 从Kafka中读取tick数据CSV文件
FlinkKafkaConsumer consumer = new FlinkKafkaConsumer(
"localhost:2181", // Kafka broker地址
new SimpleStringSchema(), // 数据类型
true); // 是否自动提交offset

consumer.setStartFromEarliest(); // 从最早的offset开始消费
consumer.subscribe(new String[]{"tick_data_topic"}); // 订阅主题

// 创建DataStream并处理数据
DataStream dataStream = env.addSource(consumer);

// 在这里实现Java级别的实时数据分析,例如计算成交量、价格等指标
// ...

// 关闭执行环境
env.execute("Flink CTP demo");
}
}


2. 使用CTP API订阅期货数据:

```java
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaSink;
import org.apache.flink.streaming.connectors.kafka.KafkaStreamsBuilder;
import org.apache.flink.streaming.connectors.kafka.KafkaTopicSelector;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafka.KafkaUtils;
import org.apache.flink.streaming.connectors.kafkaCTP;
import org.apache.flink.streaming.connectors.kafkaCTP;
import org.apache.flink.streaming.connectors.kafkaCTP;
import org.apache.flink.streaming.connectors.kafkaCTP;
import org.apache.flink.streaming.connectors.kafkaCTP;
import org.apache.flink.streaming.connectors.kafkaCTP;
import org.apache.flink.streaming.connectors.kafkaCTP;
import org.apache.flink.streaming.connectors.kafkaCTP;
import org.apache.flink.streaming.connectors.kafkaCTP;
import org.apache.flink.streaming.connectors这是一个中国期货CTP的tick数据csv的Flink读取测试,如果引入CTP API来订阅期货,则可以产生一个tick DataStream。在此基础上可以实现java级别实时数据分析
电信网络下载

访问申明(访问视为同意此申明)

1.在网站平台的任何操作视为已阅读和同意网站底部的版权及免责申明
2.部分网络用户分享TXT文件内容为网盘地址有可能会失效(此类多为视频教程,如发生失效情况【联系客服】自助退回)
3.请多看看评论和内容介绍大数据情况下资源并不能保证每一条都是完美的资源
4.是否访问均为用户自主行为,本站只提供搜索服务不提供技术支持,感谢您的支持
意见反馈 联系客服 返回顶部

登录注册找回密码

捐赠账单

可选择微信或支付宝捐赠

*请依据自身情况量力选择捐赠类型并点击“确认”按钮

*依据中国相关法规,捐赠金额平台将不予提供发票

*感谢您的捐赠,我们竭诚为您提供更好的搜索服务

*本着平台非营利,请自主选择捐赠或分享资源获得积分

*您的捐赠仅代表平台的搜索服务费,如有疑问请通过联系客服反馈

*推荐用chrome浏览器访问本站,禁用360/Edge浏览器

*请务必认真阅读上诉声明,捐赠视为理解同意上诉声明

账号剩余积分: 0
啥都没有哦